On Computing the Vertex Centroid of a Polyhedron

نویسندگان

  • Khaled M. Elbassioni
  • Hans Raj Tiwary
چکیده

Let P be an H-polytope in R with vertex set V . The vertex centroid is defined as the average of the vertices in V . We prove that computing the vertex centroid of an H-polytope is #P-hard. Moreover, we show that even just checking whether the vertex centroid lies in a given halfspace is already #P-hard for H-polytopes. We also consider the problem of approximating the vertex centroid by finding a point within an ǫ distance from it and prove this problem to be #P-easy by showing that given an oracle for counting the number of vertices of an H-polytope, one can approximate the vertex centroid in polynomial time. We also show that any algorithm approximating the vertex centroid to any “sufficiently” non-trivial (for example constant) distance, can be used to construct a fully polynomial approximation scheme for approximating the centroid and also an output-sensitive polynomial algorithm for the Vertex Enumeration problem. Finally, we show that for unbounded polyhedra the vertex centroid can not be approximated to a distance of d 1 2 −δ for any fixed constant δ > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of Approximating the Vertex Centroid of a Polyhedron

Let P be an H-polytope in R with vertex set V . The vertex centroid is defined as the average of the vertices in V . We first prove that computing the vertex centroid of an H-polytope, or even just checking whether it lies in a given halfspace, are #P-hard. We also consider the problem of approximating the vertex centroid by finding a point within an ǫ distance from it and prove this problem to...

متن کامل

Computing Vertex PI Index of Tetrathiafulvalene Dendrimers

General formulas are obtained for the vertex Padmakar-Ivan index (PIv) of tetrathiafulvalene (TTF) dendrimer, whereby TTF units we are employed as branching centers. The PIv index is a Wiener-Szeged-like index developed very recently. This topological index is defined as the summation of all sums of nu(e) and nv(e), over all edges of connected graph G.

متن کامل

Computing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes

The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G)  euv nu (e)  nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...

متن کامل

A note on vertex-edge Wiener indices of graphs

The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0806.3456  شماره 

صفحات  -

تاریخ انتشار 2008